Identification of Novel 2,4,5-Trisubstituted Pyrimidines as Potent Dual Inhibitors of Plasmodial Pf GSK3/ Pf PK6 with Activity against Blood Stage Parasites In Vitro

J Med Chem. 2022 Oct 13;65(19):13172-13197. doi: 10.1021/acs.jmedchem.2c00996. Epub 2022 Sep 27.

Abstract

Essential plasmodial kinases PfGSK3 and PfPK6 are considered novel drug targets to combat rising resistance to traditional antimalarial therapy. Herein, we report the discovery of IKK16 as a dual PfGSK3/PfPK6 inhibitor active against blood stage Pf3D7 parasites. To establish structure-activity relationships for PfPK6 and PfGSK3, 52 analogues were synthesized and assessed for the inhibition of PfGSK3 and PfPK6, with potent inhibitors further assessed for activity against blood and liver stage parasites. This culminated in the discovery of dual PfGSK3/PfPK6 inhibitors 23d (PfGSK3/PfPK6 IC50 = 172/11 nM) and 23e (PfGSK3/PfPK6 IC50 = 97/8 nM) with antiplasmodial activity (23d Pf3D7 EC50 = 552 ± 37 nM and 23e Pf3D7 EC50 = 1400 ± 13 nM). However, both compounds exhibited significant promiscuity when tested in a panel of human kinase targets. Our results demonstrate that dual PfPK6/PfGSK3 inhibitors with antiplasmodial activity can be identified and can set the stage for further optimization efforts.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Antimalarials* / pharmacology
  • Antimalarials* / therapeutic use
  • Glycogen Synthase Kinase 3
  • Humans
  • Parasites*
  • Plasmodium falciparum
  • Plasmodium*
  • Pyrimidines
  • Structure-Activity Relationship

Substances

  • Antimalarials
  • Pyrimidines
  • Glycogen Synthase Kinase 3